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Letter to the Editor 

Data mining can play a critical role in COVID-19 linked mental health studies 

Dear editor, 

At the time of writing (25th August 2020), the tally of global 
confirmed novel coronavirus (COVID-19) cases has exceeded 23.8 
million (Worldometer, 2020). As the virus is still wreaking havoc in most 
parts of the world, this unprecedented global public health disaster also 
has had an enormous impact on people’s mental health (Rajkumar, 
2020; Tandon, 2020a; Vindegaard and Benros, 2020). While psychology 
researchers across the globe are adopting various research approaches 
and techniques in fighting against the pandemic, in this letter, I would 
like to introduce an emerging technique into COVID-19 linked mental 
health studies, viz., data mining. 

Data mining is an interdisciplinary process which incorporates 
knowledge of computer science and statistics to analyze large observa-
tional datasets. The aim of data mining is to find unsuspected relation-
ships or patterns from datasets and to summarize the data in novel ways 
(Hand et al., 2001). Data mining is a broad concept and encompasses a 
wide spectrum of analytical methods. This letter presents two common 
data mining-based techniques with empirical examples to prove their 
merits in assisting mental health research. 

The first technique is topic modeling, which is a text-mining 
approach that extracts semantic information from a text database and 
discovers topics (themes) based on word co-occurrence analysis. A 
widely used topic modeling method is the Latent Dirichlet Allocation 
(LDA), an unsupervised algorithm which uses a three-layer hierarchical 
probabilistic model to identify latent topics (Blei et al., 2003). In an LDA 
model, a document (e.g., an article, an abstract or a paragraph) can be 
assigned to multiple topics with various proportions instead of assigning 
to just one topic. Drawing on the LDA technique, I analyzed 908 ab-
stracts of COVID-19 related mental health and psychological research 
articles published by July 2020 and indexed in Scopus. I used the R 
package ldatuning and estimated a best fitting topic number (8) for the 
abstract corpus. Then I used the topicmodels package to identify the eight 
topics and calculate their respective topic proportions. The results sug-
gest that health professionals’ mental health during the pandemic was 
the most studied topic in the retrieved abstracts, the topic proportion is 
17.13 %. Moreover, pandemic linked domestic and family violence and 
relationship abuse was the second most studied topic (13.32 %). In 
addition to analysis of research articles, future studies could extend to 
analyze messages from social networking sites. For example, my col-
leagues and I are planning to use the LDA technique to investigate the 
Twitter posts of some verified psychologists and psychiatrists’ accounts 
which were posed during the lockdown period. A limitation of LDA is 
that although the analysis is algorithm-based, it still requires researchers 
to manually summarize and label the topics. Which will inevitably 
contain subjective biases. 

Another data mining technique is the analysis of Internet search 
behaviors. About 80 percent of Internet users have searched for online 

health information (Grohol et al., 2014). During the pandemic lockdown 
and under the strict social distancing restrictions, people are more 
reliant on the Internet than ever before and therefore are likely to 
instigate increased Internet search if they undergo mental health issues. 
As the world’s largest search engine (Gupta et al., 2017), Google’s 
search data can provide abundant information to predict and evaluate 
epidemics such as COVID-19 (Ayyoubzadeh et al., 2020). Using the 
Google Trends service, I conducted a series of correlation analyses of the 
relationships between COVID-19 prevalence or case growth and peo-
ple’s Google search behavior. For example, I found a significant rela-
tionship between COVID-19 case growth (in early July 2020) and 
people’s recent Google search interests for the keyword “coronavirus” 
across the fifty states and the capital of the United States (r = 0.66, p <
0.01). Also, using the “related topics” and “related queries” features on 
the Google Trends website, I analyzed the relationships between an 
array of negative emotion keywords and regional COVID-19 case growth 
(in early August) in the US states. Among the twelve negative emotion 
words that I tested, ten were found to be positively related to case 
growth at the 0.1 significance level (83.3 %). For instance, “gloomy” (r =
0.53, p < 0.01), “cry” (r = 0.45, p < 0.01) and “depressed” (r = 0.43, p <
0.01) were the top three search words. However, when I attempted to 
test some more aggressive search words such as “violent” and “suicide”, 
significant relationships were not found. The results suggest that 
although people are experiencing low mood and increased stress due to 
the pandemic, most people are unlikely to take extreme actions under 
the current situation. 

Data mining can exert greater influence on COVID-19 linked mental 
health studies if we continue to underline its importance. For example, 
sentiment analysis can be implemented to evaluate Internet users’ 
overall sentiment status and thereby to monitor public health concerns 
(Singh et al., 2020). Novel data mining techniques like the Correlation 
Explanation learning algorithm (Li et al., 2020) can be used in modeling 
spatiotemporal patterns of mental disorder symptoms. Lastly, but most 
importantly, due to the varying quality of COVID-19 related data 
collected across countries, we must be exceptionally cautious in mining 
and interpreting data (Tandon, 2020b). 
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